$6\pi + 2\sigma \rightarrow 8\pi$ electrocyclic reactions probably amounts to at least 18-20 kcal/mol, a figure substantially larger than the previously suggested minimum value of 11-12 kcal/mol.^{5,25}

Acknowledgment. We are pleased to acknowledge the support of this work by the National Science Foundation. Samples of cyclooctatetraene were kindly provided by Badische Anilin-und Soda-Fabrik AG.

(25) It is possible that the transformation to the "nonallowed" system (ref 5) actually occurs via allowed hydrogen shifts from all-cis-2,4,6,8-decatetraene. We acknowledge a stimulating discussion with Professor W. R. Roth concerning this point.

Stuart W. Staley,* Timothy J. Henry

Department of Chemistry, University of Maryland College Park, Maryland 20742 Received January 15, 1971

Reaction between Azide Ion and [Ru(bipy)₂(NO)Cl]²⁺

Sir:

The preparation of a series of cis complexes $[Ru(AA)_2]$ - $(NO)X^{3+}$ {AA = 2,2'-bipyridine and 1,10-phenanthroline; $X = Cl^-$, Br⁻, NO₂⁻, and pyridine} was reported recently.^{1,2} In the complexes, coordinated nitrosyl behaves chemically as NO⁺ since reaction with hydroxide ion gives the corresponding nitro complexes.

 $[\operatorname{Ru}(AA)_2(\operatorname{NO})X]^{3+} + 2OH^{-} \longrightarrow [\operatorname{Ru}(AA)_2(\operatorname{NO}_2)X]^{+} + H_2O \quad (1)$

We find that the reactivity of the nitrosyl as NO⁺ extends to a variety of nitrogen bases, including azide ion. In aqueous solution, a stoichiometric amount of N_3^- (3 \times 10⁻³ M) reacts with [Ru(bipy)₂(NO)Cl]²⁺ $(3 \times 10^{-3} M)$ according to

 $H_2O + Ru(bipy)_2(NO)Cl^{2+} + N_3^- \longrightarrow$ $Ru(bipy)_2(OH_2)Cl^+ + N_2 + N_2O$ (2)

The aquo complex has been identified spectrophotometrically, and nitrogen and nitrous oxide have been identified by mass spectrometry. The reaction of N_3^- with HNO₂ apparently involves the formation of a nitrosyl azide intermediate, N_4O ,³ but no evidence for the existence of [Ru(bipy)₂(N₄O)Cl]+, [Ru(bipy)₂- $(N_2O)Cl]^+$, or $[Ru(bipy)_2(N_2)Cl]^+$ has yet been obtained.

The rate law for the reaction in solutions containing either excess acid or excess azide ion is

$$\frac{-d[Ru(bipy)_2(NO)Cl^{2+}]}{dt} = k[Ru(bipy)_2(NO)Cl^{2+}][N_3^{-}]$$

At 25.0° in 0.5 M lithium chloride, k is $32 \pm 4 M^{-1}$ sec⁻¹. Ru(bipy)₂Cl₂ is not observed as a product of the reaction in 0.5 M LiCl.

Reaction 2 is analogous in the opposite sense to the nitrosation of azidopentaamminecobalt(III) studied by Haim and Taube⁴ (reaction 3), since the nitrosating

$$H_{2}O + Co(NH_{3})_{5}N_{3}^{2+} + NO^{+} (or H_{2}NO_{2}^{+}) \longrightarrow Co(NH_{3})_{5}OH_{2}^{3+} + N_{2} + N_{2}O$$
(3)

group is coordinated, and N_3^- free. When carried out in nonaqueous solvents using $NO+ClO_4$ as the nitrosating agent, reaction 3 has led to labile solvent com-

plexes $Co(NH_3)_5S^{3+}$ {S = triethyl phosphate, sulfolane. etc.] which have proven useful as synthetic intermediates. 4-7

Reaction 2 can also be carried out in nonaqueous solvents, and it appears to be as synthetically useful for the ruthenium complexes as reaction 3 is for the cobalt complexes. A stoichiometric amount of sodium azide suspended in acetonitrile rapidly converts [Ru(bipy)₂-(NO)Cl]²⁺ into the acetonitrile complex with gas evolution

 $CH_3CN + Ru(bipy)_2(NO)Cl^{2+} + N_3^- \longrightarrow$ $Ru(bipy)_2(NCCH_3)Cl^+ + N_2 + N_2O$ (4)

The complex has also been prepared by refluxing $Ru(bipy)_2Cl_2$ in acetonitrile.⁸ The same reaction in acetone apparently gives the acetone complex, [Ru- $(bipy)_2(OC(CH_3)_2)Cl]^+ [\lambda_{max} 511 \ (\epsilon \sim 7250) \text{ and } 359$ nm ($\epsilon \sim 7850$)]. The coordinated acetone molecule is labile and addition of excess chloride ion, pyridine, or water gives Ru(bipy)₂Cl₂, [Ru(bipy)₂(py)Cl]+, and [Ru(bipy)₂(OH₂)Cl]⁺, respectively, within a few minutes at room temperature.

Reactions analogous to (2) and (4) also occur for [Ru(bipy)₂(NO)NO₂]²⁺, and several complexes of the type $[Ru(bipy)_2(NO_2)X]$ have been isolated. Initial experiments indicate that the entire series of complexes $[Ru(AA)_2(NO)X]^{3+}$ behave chemically as a controlled source of nitrosonium ion.

Acknowledgments. Acknowledgments are made to the UNC Materials Research Center through Contract No. SD-100 with the Advanced Research Projects Agency, the University Research Council of the University of North Carolina, and the National Science Foundation through Grant No. GY-7311.

(5) R. B. Jordan, A. M. Sargeson, and H. Taube, *ibid.*, 5, 1091 (1966).
(6) J. K. Hurst and H. Taube, *J. Amer. Chem. Soc.*, 90, 1174 (1968).
(7) J. L. Burmeister and N. J. De Stefano, *Inorg. Chem.*, 9, 972

(1970).

(8) N. Winterton and T. J. Meyer, unpublished results.

(9) National Science Foundation Undergraduate Research Participant, Summer, 1970.

> Frank J. Miller,9 Thomas J. Meyer* Department of Chemistry, University of North Carolina Chapel Hill, North Carolina 27514 Received October 29, 1970

A Novel Synthesis of 3-Substituted **Pyridines from Pyridine**

Sir:

While a wide variety of 3-substituted pyridines and their derivatives find many important applications, e.g., in biological studies,1 insecticide,2 and anticorrosion formulations,3 as intermediates in organic and pharmaceutical synthesis, and in mechanistic investigations,⁴ the preparation of these compounds has been a problem. The direct alkylation, aralkylation, or arylation at the 3 or 5 position of the pyridine ring has been particularly difficult.^{4,5} Thus, the alkylation

(1) O. Makova, L. Sindelar, and P. Vaculik, Biol. Plant., 10 (5) 360 (1969).

- (2) L. Goodhue, U. S. Patent 3,325,355 (1967); cf. Chem. Abstr., 67, 63301 (1967).
- (3) R. Kenney, U. S. Patent 3,404,094 (1968); cf. Chem. Abstr., 70, 6146 (1969). (4) R. A. Abramovitch and J. G. Saha, Advan. Heterocycl. Chem.,
- 6, 229 (1966).

⁽¹⁾ T. J. Meyer, J. B. Godwin, and N. Winterton, Chem. Commun., 872 (1970).

⁽²⁾ J. B. Godwin and T. J. Meyer, Inorg. Chem., 10, 471 (1971).

 ⁽d) See, for example, G. Stedman, J. Chem. Soc., 1702 (1960).
 (d) A. Haim and H. Taube, Inorg. Chem., 2, 1199 (1963).